Wrapper function for survtmle
that takes a fitted
survtmle
object and computes the TMLE estimated incidence for all
times specified in the times
argument. For this function to work,
the original call to survtmle
should have been executed with
returnModels = TRUE
. This allows the function to be more efficient
than repeated calls to survtmle
in that
timepoints
will use fitted censoring (and hazard if
method="hazard"
was used in the original call) estimates. It is
therefore advisable that the vector times
used in the call to
timepoints
not include times beyond the time specified in
t0
in the original call to survtmle
. This can be
ensured be making the original call to survtmle
with
t0 = max(ftime)
.
timepoints(object, times, returnModels = FALSE)
object | A fitted |
---|---|
times | The times to evaluate incidence. |
returnModels | Should the function return fitted GLM or Super Learner
models at each timepoint. If set to |
An object of class tp.survtmle
with number of entries equal
to length(times)
. Each entry is named "tX", where X denotes a single
value of times
.
# simulate data set.seed(1234) n <- 100 ftime <- round(runif(n, 1, 4)) ftype <- round(runif(n, 0, 2)) trt <- rbinom(n, 1, 0.5) adjustVars <- data.frame(W1 = rnorm(n), W2 = rnorm(n)) # fit an initial survtmle object with t0=max(ftime) fm <- survtmle( ftime = ftime, ftype = ftype, trt = trt, adjustVars = adjustVars, glm.trt = "1", glm.ftime = "trt + W1 + W2", glm.ctime = "trt + W1 + W2", method = "mean", returnModels = TRUE ) # call timepoints to get cumulative incidence estimates at each timepoint allTimes <- timepoints(object = fm, times = 1:4, returnModels = FALSE) # look at results for time 1 class(allTimes$t1)#> [1] "survtmle"allTimes$t1#> $est #> [,1] #> 0 1 0.11420933 #> 1 1 0.08893310 #> 0 2 0.09813023 #> 1 2 0.02051795 #> #> $var #> 0 1 1 1 0 2 1 2 #> 0 1 1.851155e-03 3.343729e-05 -1.918862e-04 -4.921541e-06 #> 1 1 3.343729e-05 1.679328e-03 -1.913208e-05 -3.350074e-05 #> 0 2 -1.918862e-04 -1.913208e-05 1.933470e-03 5.318150e-09 #> 1 2 -4.921541e-06 -3.350074e-05 5.318150e-09 3.632602e-04 #># look at results for time 2 allTimes$t2#> $est #> [,1] #> 0 1 0.2725236 #> 1 1 0.2440495 #> 0 2 0.1758847 #> 1 2 0.2003141 #> #> $var #> 0 1 1 1 0 2 1 2 #> 0 1 4.513203e-03 6.160159e-05 -9.378340e-04 5.297656e-05 #> 1 1 6.160159e-05 4.270541e-03 -8.875712e-05 -1.167929e-03 #> 0 2 -9.378340e-04 -8.875712e-05 3.664619e-03 1.676504e-05 #> 1 2 5.297656e-05 -1.167929e-03 1.676504e-05 3.802279e-03 #>